
First-passage times for the Uhlenbeck-Ornstein process

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 3545

(http://iopscience.iop.org/0305-4470/19/17/019)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 10:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 19 (1986) 3545-3558. Printed in Great Britain 

First-passage times for the Uhlenbeck-Ornstein process 

P W Duck, T W Marshall and E J Watson 
Department of Mathematics, University of Manchester, Manchester M13 9PL, UK 

Received 12 March 1986 

Abstract. A numerical solution is obtained for the Laplace-transformed backward Kramers 
equation, from which the mean first-passage time may be obtained. The main difficulties 
are associated with ( a )  the parabolic nature of the time-development operator and ( b )  the 
existence of a double structure in the solution near the absorbing barrier. Both of these 
difficulties are resolved by computational methods derived from boundary layer theory. 
The reliability of the method is assessed by comparing its results with an earlier analytic 
solution for the case of a uniform force field. We also present the results for a harmonic 
force field, for which no analytic solution is yet known. 

1. Introduction 

The Langevin equation of a massive Brownian particle, in suitable units [ l] ,  is 

j c +  X - F ( x )  = G( t )  (1.1) 
where F ( x )  is the force field and G ( t )  is the derivative of a Wiener process. The 
corresponding Fokker-Planck equation has been called the Kramers equation [2] and 
is 

U = 1. 
aw a2w aw a 
a t  au2 ax au 

- U - + - [ ( U  - F ( x ) )  W ]  

Wang and Uhlenbeck [2] posed the problem of calculating the first-passage times for 
this process. This may be done by solving for W(x,  U ;  t )  with certain finiteness 
conditions for large x and U, together with the boundary condition 

W(0,  U ;  t )  = o  U>.. (1.3) 
We showed, however, in an earlier paper [ l ]  that the Laplace transform of the 
first-passage time density, with initial values x = y ,  U = U, provides the more amenable 
boundary-value problem 

a2@ a@ a@ -+ U - - [ U - F ( y ) ]  --pa = 0 
av2 ay au 

@(O, U )  = 1 U < 0. (1.5) 

Here p is the Laplace transform variable corresponding to i, so that the mean first- 
passage time is obtained by differentiating @ at p = O .  It may be noted that the 
time-development operator in (1.4) is the formal adjoint of that in (1.2). This is because 
W satisfies the backward Fokker-Planck or Kolmogorov [3] equation with the initial 
values as the dependent variables and the first-passage time density is obtained by 
integrating U W(0, U ;  t )  over negative values of U. 

0305-44701861173545 + 14$02.50 @ 1986 The Institute of Physics 3545 
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This latter boundary-value problem has been solved analytically [ l ]  for the case 
of a uniform force field, F ( x ) = - 2 a .  It is no easy matter to extend the method to 
other force fields, but we find that it is possible to use certain analytic properties of 
the solution near y = 0 in order to generate a numerical integration procedure. This 
procedure is described in the next section and we have been able to test its reliability 
by comparing its results with our analytic solution. We have also used the procedure 
with the harmonic force field F(x)  = -w’(x + a ) .  This would be relevant, for example, 
if we wanted to know the waiting time for an electrical tuned circuit to reach some 
specified final state from a given initial state. 

Previous numerical approaches are considerably less reliable, as may be seen by 
comparison with our analytic solution. Essentially two methods have been tried. One 
of them [4] is a variational method based on a truncated eigenfunction expansion. 
The problem with this method is that, although we have good reason [5] to believe 
that the eigenfunctions have the necessary property of half-range completeness, the 
convergence is extremely slow [ 1,4]. The second method is to return to the Langevin 
equations and use a computer simulation of the white noise on the right-hand side. 
As may be seen by consulting the figures of this paper [6], only modest accuracy is 
obtained from a large number of runs with different realisations of the noise. In 
addition, these authors did not know the asymptotic behaviour of the first-passage 
time density for large t and had to make certain guesses. 

2. Numerical method of solution 

In this section we consider a numerical solution to the following class of problem: 

a’@ a@ a@ 
7 - f ( y ,  u ) - + u - - - p @ = O  
au au ay 

where y > 0, --CO < U <CO, p is some constant and we assumef(y, U )  is a regular function 
of U and y (y 2 0). We suppose that the boundary condition to be applied to (2.1) is 
that 

@(O, U) = 1 U < 0 only (2.2) 

OV+O as U + C O  (2.3) 

@+O as y+m.  (2.4) 

with @(O, U), ( U  > 0) remaining unspecified. We also suppose that 

and 

We shall insist that @ and are (everywhere) continuous in y > 0 (in particular along 
U = 0). 

Perhaps the most important (and novel) feature of this system is that (2.1) is 
parabolic, with the propagation of information being in the direction of increasing y 
for U < 0, but in the direction of decreasing y for U > 0. Any numerical scheme must 
then possess the correct zone of dependence. The second point to note is that the 
system takes on a singular (double) structure for small y and details of this are given 
in the appendix. We may expect that any accurate numerical treatment of (2.1) must 
take this double/singular structure into account. 
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These two difficulties are not uncommonly encountered in the context of viscous 
flow theory, in particular in certain laminar boundary layer problems. This class of 
flow is generally governed by a parabolic differential system and double structures to 
the flow often occur, particularly when discontinuities in boundary conditions are 
encountered [7]. The second difficulty, of varying zones of dependence, arises if the 
boundary layer reverses in direction. Consequently, we may draw from our experience 
in boundary layer techniques, when treating equations of this form. Indeed, (2.1) 
possesses two simplifying features over boundary layer flows. Firstly, the system is 
linear and, secondly, we know a priori the appropriate zones of dependence, two 
features not usually present in the aforementioned fluid mechanics situations. 

Since (2.1) is parabolic in character, it is amenable to numerical marching tech- 
niques. However, in order that information is propagated in the appropriate direction, 
we must march in the positive y direction for U < 0, whilst for U > 0 the marching 
process must be in the direction of decreasing y. Further we must ensure that these 
two solutions match along U = 0. 

For y s 1 ,  we build in the double structure (which was seen to occur for small y )  
into our numerical scheme. 

We write 

Q - 1 = t ’ / 2 F ( t ,  g )  

G, - fl(5, 7 ) t G  + dgF - ig2G + i g tF5  - p t 2  F - p53/2  = 0 (2.6) 

G=F,,. (2.7) 

(2.5) 

where g and 6 are defined by (A7), which then yields the following equations: 

F ( 0 , g )  = C exp( ”) 18 [ 7,  121/3 Ai( ”) 122/3 - A i l (  ‘)] 1 22/3 

where C is a constant (to be determined globally-see the appendix), which is initially 
guessed, as is the distribution Qu(y, 0). Finally f1(& g )  =f( t3 ,  (7). 

Note that G and F are strictly not regular functions of 5, due to the inhomogeneous 
term, but this singularity is only O(t3 / ’ )  and as such did not appear to create any 
numerical difficulties. We then solve (2.6) in the region O >  g > -gm (where g, is 
suitably large), corresponding to 0 > U > - g,[. 

For -g&> U >  -(vm+g,t) (where U, is suitable large), we solve the ‘outer’ 
problem, namely 

(2.9) *n - f 2 ( t ,  B W  + i U t - 2 ( 0 5 +  gm*) - p @  = 0 

with 

and 

B = v + g &  (2.11) 

wheref2(t, fi)=f(t3,  B-gmt) and so we solve (2.9) and (2.10) for O >  B >  -U,. Here 
we have used a transformed velocity coordinate and so our domain of solution in 
( y ,  U )  space increases somewhat as 5 increases. 
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We make a second-order difference approximation to (2.6), (2.7), (2.9) and (2.10) 
with A t ,  AT, A u  denoting the grid sizes in the 5, 77, 0 directions respectively. This 
yields the following equations: 

(2A 7 ) -I[  G ( 5 , ~  1 - G ( 5 , ~  - A 77 1 - G ( 5 - A 5, T - A 77 1 + G (  5 - A t ,  7 1 I 
-ffi(5-$A5, 77 - t A ~ ) ( 5 - f A t ) [ G ( 5 ,  77) + G ( 5 , 7  - A T )  
+ G ( 5 - M  77 - A T ) +  G ( 5 - A 5 ,  77)l 
+ hc 77 - f A 77 1 [ F (  5, 77 ) + F (  5 - U, 77 ) + F (  5 9 7 7  - A 77 1 
+F(5-A5,77-A77)1  
- h ( 7 7 - t A d 2 [ G ( 5 ,  7 7 ) + G ( 5 ,  7 7 - A 7 7 ) + G ( t - A 5 ,  77) 

+ G ( 5 - U ,  7?-A77)1 
+a(A5)-1(77 - - i W ( t - - i A t ) [ F G  77) - F ( 5 - A 5 ,  77) 

+ F( 677 - A T  ) - F (  I - U, 77 - A 7) 11 
- i P ( 5 - f W 2 [ F ( 5 ,  77)+)+(5-A5, 77)+F(5,77 -A771 
+ F ( 5  - A t ,  77 - A T ) ]  - ~ ( 5 - $ A 5 ) ~ / *  = O  (2.12) 

i [ G ( 5 ,  7))+G(5,77-A77)1=(A77)-'[F(5,77)-F(5, t 7 - A v ) I  (2.13) 
(2Au)-'['€'(t, 0) - 'P(& 5 -  A u )  +'€'([-A& B )  -'€'(( -A(, B - Au)]  

- if,( 5 - $A 5, B - f A U )  [ 'P( 6, B )  + VI( 5 - A 5 , B )  
+'P(t, B - A u )  +'€'('(5 - A t ,  B - A u ) ]  
+ a [  B -$Au - T,(& -fA[)]([ - fA5)-2{(A5)-'[@([, 0) 

-@(  c$-AI, 0) + @( 5, V - A u )  -@(t - A t ,  6 - A u ) ]  

+irlm[*(S, V ) + ' P ( ~ , B - A U )  
+'€'(t - A t ,  0) +'€'(5- A t ,  0 -AV)]} 
-$P[@(& B ) + @ ( t - A t ,  B ) + @ ( t ,  0 - A u )  

+@([-At ,  B - A V ) ]  = 0 (2.14) 
f['€'((, B ) + ' P ( [ ,  ~ - A U ) ] = ( A U ) - ' [ @ ( ~ ,  B)-@(I ,  8 - A u ) ] .  (2.15) 

(2.12) represents an approximation to (2.6) at the point (.$-;A[, 77 -;AT), (2.13) 
an approximation to (2.7) at the point (5, 77 -+AT) ,  (2.14) an approximation to (2.9) 
at the point ( 5 - t A 5 ,  0 - f A u )  and (2.15) an approximation to (2.10) at the point 

We require a solution to (2.12)-(2.15) for O >  77 > - T ~  and O >  B >  -um,  with a 
(5, 0 - ~ A u ) .  

match between the inner and outer solutions. This is achieved by setting 

(2.16) 
(2.17) 

In order to close the system, we set 

'€'(&, B=-u, )=O (2.18) 
whilst G(5, 77 = 0) is set equal to the (previously) guessed value. 

This general technique of splitting the governing equations into systems of first-order 
equations, which are then approximated using four mesh points was a technique 
originally used in fluid mechanics situations by Keller and Cebeci [8] and this method 
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is particularly suitable when dealing with systems of equations involving double 
structures [9]. 

Notice that the error terms in our approximations to the differential equations are 
generally O((A&)'+(AV)~) in the inner solution and O((A&)'+(AU)~) in the outer 
solution. 

The (algebraic) system we have to solve, along a line of constant 5, is then of the 
form 

A x = b  
where 

X =  

(2.19) 

(2.20) 

A is a block diagonal matrix (with each block being just 4 x 2 )  and as such is 
amenable to Gaussian elimination techniques. 

We solve for F, G, @, 9 along lines of constant 6, at t = A &  6 = 2 A t , .  . . , 1 - A &  
l (u  < O ) .  At [ =  l + A t  we switch to the @, 9, y ,  U system, an operation that is 
particularly simple to perform if we have 

A u  = qmAt  

Aq = A u  
(2.21) 

since then mesh points from the double structure at [=  1 correspond identically to 
mesh points for a single structure grid, with spacing Au. 

Notice that at 6 = 1 we also have 
l + F ( l , ~ ) = 9 ( 1 , u = q )  

G( 1, q )  = 9( 1, U = q). 
(2.22) 

In the y ,  U coordinate system, the difference equations that we must solve are then 
(2Au)-'['P(y, U )  - 9 ( y ,  U - Au) + 9 ( y  -Ay, U )  -Y(y  -Ay, U - AV)] 

- a f ( y - {Ay, U - {A U )  [ 'P ( y ,  U )  + 9 ( y ,  U - A U )  
+ 9 ( ~  - Ay, U - A u )  + Y ( y  - Ay, U)] 
+ ( ~ A ~ ) - ' ( U - $ ~ U ) [ @ ( Y ,  U )  -@(y-Ay, U )  

+ @( y, U - A U )  - @ ( y - Ay, U - A U ) ]  

- $ p [ @ ( y ,  U )  + @(y - Ay, U )  + @(y - Ay, U - Au) +@(y, U -  Au)] 
= O  (2.23) 

(2.24) f['P(v, U )  + t ( y ,  U - A V ) ]  = (Au)-'[@(Y, U )  - @ ( y ,  U -AV)]. 
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We require to solve for 0 and 9 for 0 b U b -2um, 1 +Ay S y S y,. (2.23) and (2.24) 
can then be solved (in a manner similar to that employed for 6s l ) ,  subject to 
9 ( y ,  - 2 4  = 0, whilst 9 ( y ,  0) is set equal to the previously guessed value. 

Having swept the solution for u < O  out to y ,  (and one finds @+O as y+m,  in 
agreement with (2.4)) in the manner described, we now have a @(y,O) distribution. 
The next stage is to generate the solution for U >  0, using this computed @(y,  0) 
distribution. The process is started at y = y,, where we set 

@(yea, U )  = 0 u > o  (2.25) 

and the solution in U > 0 is marched back towards y = 1 ,  solving the modified form of 
(2.23) and (2.24) (with -Ay replacing Ay). Along U = 0 we set @(y ,  0) equal to the 
value obtained from the sweep through U < 0. For 5 < 1 (i.e. y < l), we revert to the 
double structure and solve (2.12)-(2.15) (but with - A t  and -7, replacing A t  and 
T,), this time setting G(0, A t )  equal to the value obtained from the sweep through 
U < 0. The solution is continued up to 5 = A t .  Comparing the value of F ( O , t )  with 
the differentiated form of (2.8) yields a new estimate for C. Note that this particular 
process involves an error of O ( A 0  larger than for the differential equation approxima- 
tion, but was used in order to bypass possible computational difficulties in extending 
the solution up to 5 = 0. The process of sweeping through U > 0 also produces a new 
set of estimates for G(t,O), 9 ( y ,  O), which we then employ when we repeat the entire 
procedure. 

The overall iteration procedure was applied repeatedly, until the change in C fell 
below some prescribed tolerance level (typically lo-’). 

3. Results 

The first class of problem treated was for 

f(y, U )  = u + 2 a  a = constant (3.1) 
corresponding to the system considered analytically in some detail in [ 11, from which 
we have ‘exact’ solutions to compare with our present numerical results. In particular, 
in [ 11 the quantity computed was the first-passage time, namely I) = -ap( p = 0, U = 0). 

We generated this quantity by evaluating @ for two (small) values of p, Ap and 
2Ap say, noting that for p = 0, a > 0, 

@ =  1 everywhere (3.2) 

+(p = 0) = -(2Ap)-’[4@(Ap) - @(2Ap) - 31 (3.3) 

and using the approximation 

where the error involved in making this assumption can be shown to be generally 

In our computations, we chose two values of Ap, namely 0.006 25 and 0.0125. The 
computations were performed using three grids in order to gauge the effect of the 
various truncation errors. All grids were chosen with A t  = 0.025, Aq = A u  = 0.256, 
um = q, = 10.256; grid A was chosen with Ay = 0.25, y ,  = 81, grid B with Ay = 0.5, 
y,=81, and grid C with Ay=0.5,  ym=161. 

Two values of a were taken, namely 1 and f, and the results for 4 ( y ,  U = 0; a )  are 

O( (AP )2).  

shown in tables 1 and 2, respectively, together with the corresponding ‘exact’ results 
of [l]. 
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Table 1. comparison of ‘exact’ and computed @(y, 0; 1). 

Grid A Grid B Grid C 

y l?a  = y / 2  ‘Exact’ Ap = 0.006 25 Ap = 0.0125 Ap = 0.006 25 Ap = 0.0125 Ap = 0.006 25 Ap = 0.0125 

0.5 
1 
1.5 
2 
2.5 
3 
4 
5 

10 
15 
20 

1.401 134 
2.053 077 
2.629 684 
3.173 490 
3.699 995 
4.216 537 
5.233 827 
6.241 086 

11.246 86 
16.246 57 
21.246 57 

1.4417 
2.0940 
2.6705 
3.2139 
3.7403 
4.2563 
5.2728 
6.2788 

11.2707 
16.3990 
2 1.1830 

1.4171 
2.0694 
2.6454 
3.1883 
3.7135 
4.2288 
5.2421 
6.2439 

11.3486 
15.7399 
20.8359 

1.4689 
2.1232 
2.6996 
3.2437 
3.7702 
4.2871 
5.3043 
6.3115 

11.3093 
16.2853 
20.5236 

1.4284 
2.0816 
2.6576 
3.2006 
3.7261 
4.2412 
5.2550 
6.2572 

11.2062 
16.0787 
20.8591 

1.4316 
2.0851 
2.6609 
3.2047 
3.7310 
4.2469 
5.2645 
6.2694 

11.2597 
16.2247 
21.1622 

1.4105 
2.0637 
2.6394 
3.1822 
3.7073 
4.2225 
5.2334 
6.2374 

11.1832 
16.0512 
20.8245 

Table 2. Comparison of ‘exact’ and computed @(y, 0; 4). 
~~ ~~ 

Grid A Grid B Grid C 
- 

y / 2 a  = y ‘Exact’ Ap=0.00625 Ap=O.O125 Ap=O.00625 Ap=O.O125 Ap=0.00625 Ap=O.O125 

0.5 
1 
1.5 
2 
2.5 
3 
4 
5 

10 
15 
20 

1.860 302 
2.545 837 
3.144 272 
3.704 213 
2.243 102 
4.769 264 
5.799 873 
6.815 137 

11.831 026 
16.831 71 
21.831 74 

1.8694 
2.5666 
3.1656 
3.7253 
4.2634 
4.7891 
5.8178 
6.8307 

11.8238 
16.7788 
21.7031 

1.8608 
2.5487 
3.1465 
3.7045 
4.2410 
4.7645 
5.7879 
6.7937 

11.3049 
16.5621 
21.2691 

1.8737 
2.5815 
3.0463 
3.7419 
4.2050 
4.8053 
5.8341 
6.8471 

1 1.8459 
16.7981 
21.7242 

1.8622 
2.5536 
3.1290 
3.7110 
4.2228 
4.7703 
5.7935 
6.7995 

11.7316 
16.5683 
21.3043 

1.8648 
2.5576 
3.1318 
3.7178 
4.2292 
4.781 1 
5.8097 
6.8222 

11.81 5 1 
16.7695 
21.6935 

1.8587 
2.5442 
3.1384 
3.7016 
4.2324 
4.7606 
5.7838 
6.7897 

11.7213 
16.5574 
21.2926 

Generally the computations required 50-100 iterations in order to obtain the 
required convergence criterion, the actual number being dependent on the first estimate 
for C and also (Do( U = 0), although there never appeared to be very much difficulty in 
obtaining convergence. 

One difficulty encountered was that large values of y ,  were required for adequate 
numerical accuracy. This problem arises from our need for small p (which we required 
in order to obtain estimates for the first-passage times). From (3.2) we see that @ +  1 
everywhere as p + O ,  and as a result our condition that @+O as y+co becomes 
increasingly difficult to implement at finite values of y (ym). Hence the need for these 
comparatively large values of y,. 

For large y ,  the major contribution to the error in + appears to be our usage of 
(3.3). It can be shown that, as y + 00, 
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where c (  CY) is independent of both y and U, depending solely on a. (3.4) then demands 
that we take smaller values of Ap for large values of y. 

However, for the particular choice of parameters taken, tables 1 and 2 indicate 
that our results generally agree with the ‘exact’ results to within 1%, confirming our 
confidence in our scheme. 

The next class of problem tackled was for 

f(y, U ) =  u + w 2 ( y + a )  (3 .5)  

with w constant. This models the situation involving a harmonic restoring force acting 
about y = -a. This particular class of problem is not amenable to the analytic techniques 
employed in [l] (which relied on performing a Laplace transform of (2.1) with respect 
to y )  and hence it appears that a numerical approach is necessary. Our routine for 
treating (3.1) required only minimal modification for studying (3.5). 

In all our computations we set w 2  = 1 and chose a number of values of a. The 
results for the first-passage times for U = 0, +(U, v = 0), are shown in figure 1 .  All these 
results were obtained using grid C, with Ap = 0.0125. However, all these computations 
were checked by control calculations on grids A and B, and also with Ap = 0.006 25, 
and were deemed to be accurate to within the accuracy of the figures. The + ( y  +a, 
v = 0) behaviour is quite different from the previous example (3 .1)  and is seen to be 
asymptotic to a constant value-in fact, the same value for all values of a (-2.4). 
From the point of view of our numerical scheme, this had a very beneficial effect, 
eliminating the difficulties we experienced in the previous example when employing 
(3 .3)  at large values of y.  It may be noted that negative values of a differ substantially 
more from the a = 0 example than do the corresponding positive values of a. 

10 

2 

1 I I I I I I I I I I 
0 L 8 12 16 2 0  

Y 

Figure 1. The first-passage time as a function of initial position ( y )  for a particle with 
initial velocity ( U )  = 0 in a harmonic potential well having equilibrium at y = -a. 

Figure 2 shows the distribution of the recurrence times $ ( y  = 0, v > 0). In fact, 
because of the previously mentioned computational difficulties with extending the 
solution right back to y=O for u > O ,  these profiles were obtained at y = ( A 0 3 =  
O( lO-’)-within the accuracy of the graphs. The control computations which were 
carried out again indicated at least graphical accuracy. 
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10  L a=-1 
/ 
/ 

I I I I I I I 
0 2 4 6 8 10 

V 

Figure 2. The recurrence time as a function of initial velocity for a particle moving in the 
same potential well as for figure 1. 

The recurrence time distributions appear to be asymptotic to a constant value as 
U + CO and this point is taken up in the following section. Further, as in the case of 
the $(y ,  U = 0) distributions, the negative a profiles differ considerably more from the 
a = 0 example than do the positive a distributions. A fuller discussion of the physical 
implications of these results now follows. 

4. Discussion 

The asymptotic behaviour of $ ( y ,  U )  for large values of either argument, as depicted 
in figures 1 and 2, is explained by reference to the Langevin equation (1.1) with which 
we began, putting F (x )  = -x  - a. For either U = 0 and y large and positive, or y = 0 
and U large and positive, we would expect to be able to disregard the noise term 
altogether. In that case the (deterministic) solution is, for y = 0, 

x = a(e-"2 cos i td3  + 3-''2 e-'/2 sin i t43  - 1) + (2u/J3) e-rr2 sin 4td3. (4.1) 

For large U the particle returns to x = 0 after a time t = (2.rr/d3) = 3.6276 irrespective 
of a. This corresponds to the position of the asymptote in figure 2. We also see from 
this analysis why the asymptote is approached from below for a > 0 and from above 
for a < 0. Similarly, for U = 0, the deterministic solution is 

x = a(e-lr2 c0s i t J3+3- ' /~  e-rr2 sin ' , tJ3-1)+y(e- ' '~ c0s f td3+3- ' /~  e-r/2sinitJ3) 

and for large y this gives a return time of (47r/3d3) = 2.4184, which corresponds to 
the asymptote of figure 1. Notice that this case (equivalent to w 2  = 1) is typical of an 
under-damped case; the critically or over-damped cases are, of course, rather different. 

The shapes of the curves in figures 1 and 2 may be understood qualitatively by 
noting that the external harmonic force has its equilibrium position at x = -a. For 
positive a this is on the other side of the absorbing barrier. Hence the behaviour of 
the function $ ( y ,  U )  is qualitatively no different from that obtained for the uniform 

(4.2) 
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force field. If, however, a is negative, then there is a real potential well at x = -a, in 
which the particle may be trapped for a long time before it acquires, through thermal 
agitation, enough energy to jump back to the absorbing barrier. Such behaviour for 
u = O  will be most pronounced when y = - a ,  when it may be expected that the 
first-passage time will be the inverse of a Boltzmann factor, i.e. exp(fa2) or, in 
dimensional units, exp[Mw2a2/(2kT)]. For very small y the thermal agitation is more 
important than the force field, so $(y,O) tends to zero as y tends to zero, while for 
large y the deterministic force field dominates and we approach the asymptote discussed 
above. This gives us a set of curves as in figure 1. The behaviour of $(O, v ) ,  as depicted 
in figure 2, is similar: for a particle released at x = 0 the return time is short for small 
U and tends to the limit 3.6276 as U tends to infinity, while for a range of medium 
values it may become trapped with a return time of the order exp(fa2). 

Appendix. The singularity at y = U = 0 

We consider the equation 

- [ u + 2 a ( y ) ] @ . , +  UOy - p @  = 0 (Al l  

@(O+, v )  = 1 for u < O  (A21 

a(y )=ao+a ,y+a ,y2+ . . .  . (A31 

where 

and @(y ,  U )  is required to be bounded for all U and y. We assume that near y = 0 

If we look for a power series expansion in y ,  so that 

then we find, on equating coefficients, that 
n 

( n  + I)uF,+, =pFn + ( u + ~ c x , ) F ;  - F i  + 2  CY,F;_,. 
m = l  

The initial condition (A2) gives, when U < 0, 

Fo( U )  = 1 

so that 

Fi(u)  =piu 

F2( U )  = [P( P - 1 )/2v21 - sop/ u3 - p /  u4 

and in general 

The expansion (A4) therefore fails as U +  0-, becoming non-uniform when U = 
O ( Y ' / ~ ) .  This suggests that it should be regarded as an outer expansion and should 
be supplemented by an inner expansion in terms of the variables 

6 = 32 '3  7 = u / y ' / 3 .  (A71 
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From (A6) we obtain the matching condition that 

Q, - 1 + p( ,-,-I - ’7-4+. . .) t2 + a,p( - t)3 + . . .) t3 + . . . 
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(‘48) 

as t) + --CO. 

In terms of the inner variables (A7), we have 

and we seek an inner expansion in the form 

o=z t A f A ( t ) ) *  

We must have A 2 0 and f A ( t ) )  = O(It)/’) as t) + *-CO, in order that @(y ,  U )  shall remain 
bounded. The matching condition (AS) shows that the range of A must include the 
values 0 , 2 , 3 , .  . . . From (A9) and (A10) 

Consider first the complementary functions 4A (t)), given by 

LA { 4A 1 = 0. (A121 

The general solution of this equation, namely 

(A13) 4. 1 3 4~\(t))=A,F,(-fA;i;$t)~)+Bt)1F1(f(l - A ) ; s , g t )  1 
is exponentially large as t) + +a, and therefore inadmissible unless A and B are related 
so that 4,, = 0 ( v A ) .  We therefore define 

so that 

4 A ( t ) ) -  77A2FO(-$A9 f (1-h) ;  ( -9 /q3))  as  CO. (‘415) 

We also have 

4 A ( ~ )  = e ~ p ( $ t ) ~ ) [ A ~ F , ( f ( A  + 2 ) ; i ;  -$773)+Bt)1F1(fA + 1;;; - $ q 3 ) ]  

- 2 sin(i.rr(l -2A))(-77)A2F0(-fA, f ( l  - A ) ;  ( - 9 1 ~ ~ ) )  as t) + --CO. 

(A161 

If  A = 3m 1-4, where m is an integer, this asymptotic form vanishes identically. The 
relevant values of m are 0, 1 , 2 , .  . . , and then 

so that the function is exponentially small as t) + --CO. These values of A are therefore 
eigenvalues, such that the corresponding eigensolutions 53m+1’243m+1,2( t)) make no 
contribution to the outer expansion in U < 0. From (A12) and (A15) we can establish 
the recurrence relation 

4 A + 3 ( 7 7 )  = h 3 - 3 A  -6)4A(t)) -3t)+;(t)) .  (‘418) 



3556 P W Duck, T W Marshall and E J Watson 

When m = 0,1,2,. . . , the functions 43m(77) and & m + 1 ( 7 7 )  are polynomials in 77 and 
the asymptotic expansions (A15) and (A16) terminate and are exact. The functions 
4 3 m + 2 ( 7 )  can be derived by means of (A18) from 

(A191 
d ‘ l 2  e ~ ~ ( h ~ ~ ) ~ , / ~ ! h 7 7 ’ >  (77>0) 

’-’(’)={ i ( - r V ) 1 ’ 2  exp(~773)[z-l/6(-~773)+z1/6(-~773)1 (7  <o)  
and the eigenfunctions 43 , , ,+1 /2 (  7) from 

From ( A l l )  and (AS), the leading term of the inner expansion is 

fo(7)) = +0(77) = 1. (A211 

Since fh( 77) = 0 and 4,(  7) is not an eigenfunction, we must have 

f1(77)=0. (A221 

L 2 { f 2 )  = P 

f 2 ( 7 7 )  = f P h 2 + % 4 2 ( 7 7 ) 1 .  

L 3 { f 3 )  = 2aofS = aoP(277 +549 

Hence 

of which the required solution is 

We then have 

from which 

f 3 ( 7 7 )  = & a 0 p h 3  -2++7742(77)). (A241 

These results satisfy the matching condition (AS) and there is no difficulty, in principle, 
about calculating higher terms. 

The first eigenfunction to occur in the expansion (A10) is 

f l / 2 ( 7 7 )  = C041/*(77) (-425) 

f 3 / 2 ( 7 )  = COa07741/2(77) ( N 6 )  

h / 2 ( 7 7 )  = c0[~ (18a~+1+8P)77241 /2 (77)+~(1  - 2 a a P ) 4 ; , 2 ( 7 7 ) 1 .  ( N 7 )  

f 7 / 2 ( 7 )  = C O ( Y O [ ( ~ + b a ~ ) 7 7 3 - f + 3 a ~ + 3 ~ l ~ l / ~ ( ~ ) +  c 1 4 7 / 2 ( 7 )  (N8) 

4 7 / 2 (  7) = ( 7 1 ~  - 3 4 d  7) -3774% 77). 

where CO is not determined by the matching condition. This generates the further terms 

and 

We then find that 

where C1 is indeterminate and the second eigenfunction is given by 

( N 9 )  
The coefficients CO, C,, . . . , of the eigenfunctions in (A10) depend on the global 
behaviour of the solution and are determined by the boundary conditions on @ as 
v + fa and y + +CO. 
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As q + +CO we recover the outer expansion (A4) with 

Fo(u) = 1 + C ~ ~ ~ ~ ~ + C ~ a ~ u ~ ~ ~ + ~ p u ~ + ~ C ~ ( 1 8 a ~ +  1 + 8 p ) ~ ’ / ~  

+ t a O p u 3  +o( u ~ / ~ )  for u > O .  

At q = O  we have 

The terms O(u7l2) and O(y7l6)  in (A30) and (A31) involve C,, the second indeterminate 
coefficient. Similarly 

34/3 r (f ) 
4q-3)  4 q - i )  

py‘ l3+-  a 0 p y 2 / 3  + ~ ( y ” ~ ) .  
+ 3Il3r( - f )  

In the case a ( y )  = ao, a constant, the coefficient CO can be determined from the 
analytical solution of [ 11 which gives 

where 

and 

b, =(n!)-’ /2(q,+ao)“-1 exp(-aoq, -in - fp)  (‘434) 

The sum of any finite number of terms of the series (A33) remains bounded as y + 0+, 
so that we need the asymptotic form of the nth term as n + 03. As in [ 11, appendix 3, 

where 

G0=(8.rr)-”2S0=(8.rr)-”2 f -. b m  
m=O q m Q m  

We also have from [l], (A1.32) and (A1.33), 
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It follows that 

so that as y+O+ 

where 
30 

z ( v , ~ ) =  m-' e-yJm ('440) 

Z( V, y )  = 2 1 - ( 2 - 2 ~ ) ~ ~ " - ~ +  l( v - + m ) ( - y ) " / m !  ('441) 

m = l  

is the function defined by Titulaer [lo]. Since 
cc 

m = O  

we have 

Comparison with (A32) therefore gives 
CO = - 3 1 / 2 ( 2 ~ ) - 1 / 4 s ~ p .  ('443) 

The constant So depends on p and ao. We are particularly interested in the case 
when p is small, so that CO is proportional to p .  With p = 0, from [ 11, (A3.14), 

('444) 

In the case a. = 1,  for which qm = ( m  + 1)'I2,  numerical values of d o - d I 5 ,  and of &-D4, 
were computed, and D5 was estimated. These values give 

m 14 5 

So= d , -  d , + C  DJ(4r+$,16) 
m = O  m=O r = O  

= 0.683 1 ('445) 
so that 

for ao= 1 and p small. 
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